RSE-M

IN-SERVICE INSPECTION, INSTALLATION AND MAINTENANCE RULES FOR MECHANICAL COMPONENTS OF PWR

2018 EDITION
1st Erratum - October 2020

Afcen
French Association
for Design, Construction and In-Service Inspection Rules for Nuclear Island Components

AFCEN - Association governed by the French Law of $1^{\text {st }}$ July, 1901 Administrative Offices: AFCEN, Tour AREVA - 92084 Paris la Défense Cedex

ISBN No. 979-10-95971-25-2

NOTE TO THE USERS

This document proposes modification which correspond to a translation error in the RSE-M 2018 English edition. The following page is to be replaced:

- Volume II - Appendix 5.4 - Page 31

If $L_{r}^{*}<L_{r} \leq 1$, a new value for K_{r} is determined by a linear interpolation between $\mathrm{K}_{\mathrm{r}}\left(\mathrm{L}_{\mathrm{r}}{ }^{*}\right)$ and $\mathrm{K}_{\mathrm{r}}\left(\mathrm{L}_{\mathrm{r}}=1\right)$:

$$
K_{r}=K_{r}\left(L_{r}^{*}\right)+\frac{K_{r}\left(L_{r}=1\right)-K_{r}\left(L_{r}^{*}\right)}{1-L_{r}^{*}}\left(L_{r}-L_{r}^{*}\right)
$$

where

$$
K_{r}\left(L_{r}^{*}\right)=\left\{\frac{E \varepsilon_{\text {ref }}\left(L_{r}^{*} S_{y}\right)}{L_{r}^{*} S_{y}}+0.5 \frac{\left(L_{r}^{*}\right)^{2}}{\left(L_{r}^{*}\right)^{2}+1}\right\}^{-\frac{1}{2}}
$$

and

$$
\mathrm{K}_{\mathrm{r}}\left(\mathrm{~L}_{\mathrm{r}}=1\right)=\left\{\frac{\mathrm{E} \varepsilon_{\mathrm{ref}}\left(\mathrm{~S}_{\mathrm{y}}\right)}{\mathrm{S}_{\mathrm{y}}}+0.25\right\}^{-\frac{1}{2}}
$$

d) J is calculated by the formula:

$$
J_{s}=J_{e l .} \frac{1}{K_{r}^{2}} .
$$

IV.4.1.1.2 J_{S} CLC OPTION - STRAIGHT PIPE - LONGITUDINAL SURFACE BREAKING DEFECT

a) L_{r} is calculated using the following expression:

$$
L_{r}=\sqrt{\left[\frac{p}{q_{p} \mu_{e p}}\right]^{2}+\left[\frac{m_{1}}{q_{p} \mu_{\mathrm{em} 1}}\right]^{2}+\left[\frac{m_{2}}{q_{m}}\right]^{2}}
$$

where $\mathrm{p}, \mathrm{n}_{1}, \mathrm{~m}_{1}$ and m_{2} are normalized loads:

$$
p=\frac{\sqrt{3}}{2} \frac{\operatorname{Pr}_{m}}{t S_{y}} \quad m_{1}=\frac{\sqrt{3}}{2} \frac{M_{1}}{\pi r_{m}^{2} t S_{y}} \quad m_{2}=\frac{M_{2}}{4 r_{m}^{2} t S_{y}}
$$

P : internal pressure $\quad M_{1}$: torsional moment $\quad M_{2}$: bending moment

- if $m_{2} \neq 0$ and $p \leq 0.5$, this expression is valid for $L_{r} \leq 1.4$;
- if $m_{2} \neq 0$ and $p>0.5$, this expression is valid for $L_{r} \leq 1.2$.

If only the applied moment modulus $|\mathrm{M}|$ is known, it is assumed that: $\mathrm{M}_{1}=|\mathrm{M}|$ and $\mathrm{M}_{2}=0$.
The significance and value of coefficients $q_{m}, q_{p}, \mu_{e m 1}$ and $\mu_{e p}$ are given in compendium (VII).

